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kBSTRACT

A study was conducted to evaluate the feasibility of using item response
theory (IRT) equating to reduce test form overlap of the GRE Subject Test in

Mathematics. Monte-Carlo methods were employed to compare double-part
equating with 20-item common item blocks to triple-part equating with 10-item
common item blocks. The two methods were evaluated using a circular design
that allowed a form to be equated to itself through a series of other forms.
The design was replicated five times.

Comparisons between scores on equated forms and scores on the base form
indicated that triple-part equating did at least as well as double-part

equating. This suggests that it may be reasonable to use IRT equating with
the GRE Mathematics test with smaller common item blocks than are used with
the linear equating procedures currently employed, as long as there are more

of them. This would result in a substantial reduction in the advantage given
to repeat examinees, and would significantly decrease the number of items on

any one test form affected by compromised security.

It was concluded that triple-part equating is promising, but it was
pointed out that some issues need to be resolved before the procedure can be

implemented. Among these are the effect of differing ability distributions
across forms to be scaled, and the practicality of constructing six common

item sets from each form. It was recommended that an additional study be
conducted to examine the effect of differing ability distributions on the
equating process, and to investigate the feasibility of combining common item
sets into a single scaling.



INTRODUCTION

Many large testing programs use multiple forms of a test. Because these
test forms tend to differ slightly in difficulty and other psychometric
characteristics, it is necessary to equate the scores obtained from different
forms. One way of accomplishing this is through the use of a subset of items,
called a common item block, that appears on different test forms. Scores on
these common items for groups of examinees receiving different test forms are
used to establish the relationship )etween the different forms.

The use of common items for equating, although a popular method, does
have disadvantages. For instance, when an examinee takes the test a second
time, even though the examinee receives a different form of the test, if the
two forms have common items, the examinee is advantaged the second time
because she or he took some of the items earlier. In addition, if the
security of a test form were ever compromised, to some extent otner forms with
some of the same common items also would be compromised.

The GRE Subject Test in Mathematics, like all GRE Subject Tests, uses
common items for equating. New forms of the test are equated to one or two

old forms. In addition, each new form is subsequently used as the o?d form in
the equating of an even newer form. Forms equated to only one old form are
used as the old form in the equatings of two new forms. Forms equated to cwo
old forms are used as the old form in the equating of only one new form.
Thus, every form of the test is eventually used in three equatings, once as
the new form and twice as the old form, or twice as the new form and once as

the old form. Each form therefore has items in common with three other forms.
Currently, 20 items are used in common item blocks, and equatings are
performed using Tucker and Levine linear equating methods (see Angoff, 1984,
for a discussion of these equating procedures). When two old forms are
used in the equatings, the two equatings are averaged.

The GRE Subject Test in Mathematics contains only 66 items. As much as
90 percent of a form (60 items) eventually appears on other forms, and any one
form may share as much as 30 percent of the items (20 items) with any other
form. This is particularly troublesome in vlew of the fact that, for example,
17 percent of the examinees taking the GRE Subject Test in Mathematics in
1986-87 had taken the test at least once previously. Thus, the problems of
test security and repeat test takers having an unfair advantage are magnified
with this degree of overlap of items.

The use of item response theory (IRT) based equating might make it
possible to reduce the size of the common item blocks required for accurate
equating. In theory, with IRT equating it is possible to construct a common
item block for every available test form. For example, if there were 10 test
forms available, the two 20-item common item blocks currently used could
theoretically be replaced with 10 four-item common item blocks, each
containing items from a different form. In practice, however, four items are
not enough to ensure content representativeness, and are probably not enough



to yield precise scalings. Moreover, such a practice would guarantee that a
repeat examinee would see at least a few items again.

A more practical procedure might be to use a somewhat smaller number of
common item blocks and adjust the size of the blocks accordingly. For
example, it might be useful to construct four blocks of 10 items each. Ten
items per block is likely to produce better scalings, and increases the extent
to which content representativeness can be maintained. In addition, it has
the advantage of reducing the number of test forms affected if test security
is compromised. Unfortunately, it has one major disadvantage. If there is to
be no overlap of common item blocks, a test form equated to four old forms
using 10 items per common item block can be used as an old form for at most
two new test forms. Thus, at some point it will becw-a impossible to find
four old forms to which a new form can be equated.

To avoid this problem, it might be possible to reduce not only the size
of the common item blocks, but also the overall number of common items. For
instance, if three 10-item common item blocks were used, it would be possible
to equate a new form to three old forms, and to later use the form as an old
form in the equating of three additional forms. The overall number of common
items would be reduced from 40 to 30 at the time of equating, but once the
form had been used as an old form three times, the total number of common
items would be 60, the same as for the current procedures. But the number of
items in common with any one form would be reduced from 20 to 10, thus
reducing the advantage for repeaters while not unduly increasing the
likelihood of a repeat test taker seeing some items twice.

McKinley and Kingston (1987) demonstrated the ,easibility of using IRT
true-score equating (Lord, 1980) with the GRE Subject Test in Mathematics.
The test was shown to be essentially unidimensional, and item responses were
reasonably well fit by the three-parameter logistic (3PL) model. In that
study, two forms with 20 items in common were equated using Tucker,
equipercentile, and IRT equating. The resultirn; equipercentile and IRT score
conversions were found to be quite similar. Both evidenced a mild degree of
curvilinearity, and therefore differed somewhat from the linear equating
produced using the Tucker method.

IRT equating might be accurate with smaller common item blocks than are
currently used operationally, and the McKinley and Kingston study demonstrated
that IRT equating might reasonably be used with the GRE Subject Test in
Mathematics. The purpose of this study, therefore, was to determine whether
it is possible to reduce test form overlap of the GRE Subject Test in
Mathematics through the use of IRT equating using smaller common item blocks.

METHOD

This Monte-Carlo study was based on a circular equating plan, in which a
test form was equated to itself through a series of other forms. The extent



to which the resulting score conversions matched the base form score
conversions served as a criterion for evaluating the quaiity of the equating.
Tne use of a circular equating scheme to examine scale stability has been
employed in other studies of IRT equating methods (e.g., Petersen, Cook,
& Stocking, 1983).

Figure 1 shows the relationships among the seven simulated test forms.
The number of common items for any two forms is indicated by the number next
to the arrow lie arrows indieate the direction of scaling, which is discussed

below). Form A is designated as the base form, and Forms 3, C, and D are
designated as the first tier of forms. Each filst-tier form 1- s a different

set of 20 items in common with the base form.

Forms E, F, and G are designated as the second tier of forms. Each of

these forms has 20 items in common with one of the first-tier forms. In

addition, Forms F and G have 20 items in common with the base form, and Form E
has 10 items in common with the base form. This design was replicated five
times to assess the significance and generalizability of the results.

Item Parameters and item Response Data

In order to place each form on the same scale and then equate Form A to
itself through the other forms, true item parameters for each form were first
generated. Estimates of these parameeers were then obtained from simulated

item response data. These estimates were then used to soale tier 1 forms to
Form A and then to scale tier 2 forms to tier 1 forms: This scaling procedure
allowed scale drift to occur, and thus provided a need for equating. These

procedures are described in greater detail below.

The true item parameters for Form A were obtained in the McKinley and
Kingston (1987) study from a calibration of actual test data from an
operational test form. The covariance matrix for Form A parameters from that
study was then used to generate true parameters for the other six forms.
First, parameters for the items chat overlapped with Form A were obtained.
Then, item difficulty "b" parameters for nonoverlapping items were selected
from a standard normal distribution (z-scores) and scaled to the b's for Form
A by setting means and standard deviations equal. The item discrimination "a"
and lower asymptote "c" parameters for the nonoverlapping items were obtained
using a multiple regression model that enabled sampling from the same
covariance matrix for each form. Table 1 presents summary statistics for the
true item parameters for each form.

True ability parameters ("theta") for examinees taking each form were
selected from a standard normal distribution. Thus, the average ability level

of examinees taking each form differed only by sampling error. (In actual

test situations, the avkrage ability level of examinees taking different forms
may differ substantially. Due to budget considerations, however, this
additional component was not included in the study. Refer to the Summary and

Conclusions section for further elaboration.)
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FIGURE 1. Number of common items and direction of scaling
for seven simulated test forms



Table 1
Summary Statistics for True Item Parameters

Form

Mean Std. Dev. Correlations

a b c a b c a-b a-c b-c

A 1.07 0.04 0.17 0.32 1.09 0.08 0.28 0.22 0.21

B 1.02 -0.06 0.15 0.33 1.13 0.08 0.15 0.16 0.23

C 1.12 0.36 0.18 0.35 0.98 0.08 0.08 0.21 0.29

D 0.98 -0.07 0.16 0.30 1.15 0.07 0.26 0.24 0.42

E 1.01 -0.10 0.17 0.31 1.00 0.08 0.31 0.18 0.30

F 1.14 -0.05 0.16 0.35 1.18 0.09 0.21 0.17 0.29

G 1.06 0.17 0.18 0.28 1.04 0.08 0.03 0.12 0.18

Item rcsponse data were generated to fit the 3PL model for 750 simulated
examinees for each test form. This number reflects the approximate number of
examinees typically available at equating administrations of the GRE
Mathematics test. Right or wrong responses for all items were generated for
each examinee to provide a baseline for obtaining estimates of the true item
parameters. Based on the true examinee ability parameters and the true item
parameters, each examinee had a probability of a correct response to each item
under the 3PL model. A random number between 0 and 1 was selected for each
examinee-item combination, and if this number was less than the probability of
a correct response, the item was scored as correct; otherwise, it was scored

as incorrect.

Item analyses were run on each form to evaluate the extent to which the
forms were equivalent, and to identify any unrealistic item parameter triplets
(e.g., very easy items with high guessing). Only two item parameter triplets

were judged to be unrealistic and were modified. Table 2 presents results of
item analyses for each form and replication.

The LOGIST (Wingersky, 1983) program was run on item response data
separately for each form to obtain estimates of examinee abilities and item
parameters. All estimates were scaled using the mean and standard deviation
of the ability distributions, which were about the same for all forms. Item-

ability regression plots (Kingston & Dorans, 1985) were eXamined visually for
observed proportions correct that fell outside an approximate 95 percent
confidence interval around the value predicted by the model. These plots
indicated that the 3PL model appeared to fit the data well and confirmed the
reasonableness of the data generation procedure.



Scaling and Equating

Because the IRT scale is established independently within individual runs
of LOGIST by standardizing the ability estimate distribution, item parameter
estimates for different forms tend to be on different scales. In order to
equate two forms analyzed in separate LOGIST runs, then, it is first necessary
to place the estimates for the two forms on the same scale. In this study,
error was intentionally introduced into the IRT scale by using multiple
scaling tiers. Averaged multiple IRT equatings (based on separate scalings)
were then obtained and evaluated to determine the extent to which the error
was corrected.

Pursuant to this aim, scalings were performed in three steps. First,
Forms B, C, and D were scaled to Form A. Then, Forms E, F, and G were scaled
to the already-scaled Forms B, C, and D, respectively. Finally, Form A (to
which all other forms had been scaled, either directly in the case of Forms B,
C, and D, or indirectly in the case of Forms E, F, and G) was scaled five
times: to Forms F and G, each using 20 common items, and to Forms E, F, and G,
each using 10 common items. All scalings were performed using the
characteristic curve method (Stocking and Lord, 1983) as implemented in the
TBLT program. Note that the scaling of tier 1 to Form A and tier 2 to tier 1
was for the purpose of introducing error. Therefore, only single 20-item
scalings were used for each form. Although it would have been more realistic
to use 10-item scalings for the triple-part equating procedure, doing so would
have made it impossible to determine whether differences in the results for
the double- and triple-part equatings were due to the equating methods or
differences in the amount of error introduced into tier 2.

Once Form A had been scaled to itself through tiers 1 and 2, it was
equated to itself five times. Each equating was based on one of the five
scalings describedabove. Equating was performed using the IRT true-score
method described by Lord (1980). Because the GRE Subject Test in Mathematics
is formula-scored operationally, the equating in this study was done on
formula scores. In addition, to facilitate interpretation of results, a
linear transformation of estimated true scores to the GRE score scale was also
performed, based on the actual original Form A linear conversion parameters.

The equating results based on the two 20-item common block scalings were
then averaged, as were the three equatings based on the 10-item common block
scalings. For comparison purposes, two of the three equatings based on
10-item common block scalings were also averaged. The same two forms as were
averaged in the double-part 20-item scalings were used for the double-part
10-item scalings.
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Summary of Item Difficulties,
Table 2

Biserial Correlations, and Reliabilitias

Form

Replication/Statistic A B C D E F G

Replication I
Mean Proportion-Correct 0.58 0.58 0.53 0.59 0.61 0.60 0.56
S.D. Proportion-Correct 0.20 0.20 0.17 0.20 0.19 0.20 0.19
Kean Biserial 0.58 0.59 0.56 0.53 0.57 0.60 0.56

S.D. Biserial 0.11 0.16 0.15 0.13 0.12 0.15 0.15

Reliability 0.93 0.94 0.93 0.92 0.93 0.94 0.93

Replication 2
Mean Proportion-Correct 0.55 0.55 0.52 0.60 0.61 0.61 0.56

S.D. Proportion-Correct 0.20 0.20 0.18 0.20 0.18 0.20 0.19

Mean Biserial 0.57 0.58 0.56 0.53 0.59 0.60 0.56

S.D. Biserial 0.11 0.17 0.16 0.14 0.13 0.16 0.15

Reliability 0.93 0.93 0.93 0.92 0.93 0.94 0.93

Replication 3
Mean Proportion-Correct 0.57 0.59 0.53 0.60 0.60 0.59 0.56

S.D. Proportion-Correct 0.20 0.20 0.18 0.20 0.19 0.21 0.19

Mean Biserial 0.57 0.58 0.55 0.55 0.55 0.56 0.55

S.D. Biserial 0.11 0.17 0.15 0.12 0.13 0.16 0.15

Reliability 0.93 0.93 0.93 0.92 0.93 0.93 0.93

Replication 4
Mean Proportion-Correct 0.56 0.60 0.52 0.59 0.60 0.59 0.56

S.D. Proportion-Co_rect 0.20 0.19 0.17 0.19 0.19 0.20 0.19

Mean Biserial 0.57 0.58 0.58 0.55 0.55 0.59 0.55

S.D. Biserial 0.11 0.16 0.16 0.12 0.13 0.15 0.14

Reliability 0.93 0.93 0.94 0.92 3.93 0.94 0.93

Replication 5
Mean Proportion-Correct 0.56 0.58 0.52 0.58 0.60 0.60 0.56

S.D. Proportion-Correct 0.20 0.20 0.17 0.20 0.18 0.20 0.18

Mean Biserial 0.58 0.58 0.56 0.54 0.57 0.62 0.56

S.D. Biserial 0.10 0.17 0.16 0.12 0.15 0.15 0.15

Reliability 0.94 0.93 0.93 0.92 0.93 0.94 0.93



Analysis

If Form A were equated to itself without going through the multiple
,.caling process described abo,,e (i.e., no error in the IRT scale), the
resulting score conversion would be giver by a 45-degree line through the
origin. That is, observed scores and equated scores would be identical.
Since in this study Form A was equated to itself, th,: extent to which the
resulting score conversions follow a 45-degree line through the origin is the
extent to which the multi-part equating procedures employed were succe--ful in
recovering from the error introduced during the scaling process.

Two summary statistics were computed to evaluate the two equating
procedures. The first of these was a root mean squared error (RMSE)
statistic, which provides an indication of the average amount of deviation of
the score conversion from the 45-degree line through the origin. This

statistic is given by

1 P 2 1/2

RMSE ( E N.(E.-Bi) )

750 i--1 1

(1)

where P is the number of possible formula scores, E. is the averaged equated
scaled score corresponding to formula score i (obtained either from the
double-part equating or the triple-part equating), Bi is the unequated scaled
score from the base form corresponding to formula score i, and Ni is the
number of examinees in the Form A sample who obtained the formula score i.

The second statistic computed was an indicant of the amount of bias in
the averaged score conversions. The amount of bias indicates the extent to
which the averaged score conversions tended to be either above or below the
45-degree line through the origin. This sta::.,stic was computed as

1 P

BIAS E N. .(E-B )
1. i

750 i-1

where each term is defined above.

(2)

In addition to the RMSE aad BIAS statistics, overlay plots were
constructed showing the amount of error in the unaveraged score conversions as
a function of unequated base scaled score. A separate plot was const/ -,ted
for each replication for each of the two equatAng procedures.



RESULTS

Figure 2 displays the differences between 20-item double-part equated
scores and base form scores (i.e., equated minus base) for each replication.

Figure 3 shows the differences between 10-item triple-part equated scores and
base form scores for each replication. Note that in all instances the equated
and base scores are the same at the minimum and maximum scores (about 350 and
1050). Equating actually does not occur at these extremes because ability
levels cannot be determined.

Figures 2 and 3 illustrate that there was considerable variation in the
error patterns for different equatings, regardless of which procedure was

used. Interestingly enough, the largest equating errors were observed for one
of the 20-item common item block equatings. From this finding it appears that
there was not really any advantage to using 20 common items rather than 10.

Figure 4 shows the difference betweeL averaged equated scores (both
double-part and triple-part) and base form scores for each replication. The

magnitude of the differences genercdly ranged from zero to about plus or minus
12 points for the double-part equating, except for replication 3, where
averaged equated scores were as much as 23 points higher than base form scores
at the upper end of the score scale. For the triple-part equated scores.
differences generally ranged from zero to about plus or minus eight points,
except for replication 5, where averaged equated scores were as much as 20
points higher than base form scores at the upper end of the score scale.

Figure 4 also shows there was no advantage to using 20 common items

rather than 10. The errors in the averaged score conversions actually tended
to be larger for the double-part equating using 20 common items. It also

appears from Figure 4 that the results over replications werc more stable for

the triple-part equatings, despite the use of fewer common items.

Table 3 shows the RMSE and BIAS statistics obtained for each equating
procedure for each replication, as well as the mean and standard deviation
over replications of each statistic. From these data it can be seen that,
over replications, the triple-part equating procedure yielded less bias and
error than did the double-part equating. There was also less variation over
replications for triple-part equating, indicating once again that triple-part
equating results were more stable than double-part equating results.

For the most part, the RMSE statistics were relatively small, ranging
between three and eight. Considering that GRE scores are rounded to the
nearest 10 points, these values are for practical purposes almost negligible.
In two instances, the double-part equating in replication 3 and the
triple-part equating in replication 5, the RMSE values were greater than 10

points.

BEST COPY AVAILABLE
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Figures 2 and 3 illustrate why this occurred. In these two instances,
the equating for at least one form exhibited a relatively large difference
between averaged equated scores and base form scores, and the two or three
difference plots were either abo,,e or below the zero difference line at almost
all the scores. Thus when the average was taken, one line did not
"counteract" another, the averaged line remained relatively far away from the
zero difference line, and the RMSE was relatively large. In most other
instances, either there were no large errors (e.g., replication 1 double-part
equating), or large errors for one equating were offset by opposite-signed
errors for another form (e.g., replication 3 for triple-part equating). This

finding highlights an advantage of triple-part equating, in that the fewer the
number of equatings that are averaged, the more likely it is that large errors
will not be offset.

Table 3
Root Mean Square Error (RMSE) and BIAS Statistics

Equating/
Statistic

Replication Mean
Over
Reps

S.D.

Over
Reps1 2 3 4 5

Double-Part (20 items)
RMSE 3.79 8.26 13.45 5.24 5.85 7.32 3.79

BIAS -2.05 5.39 6.66 5.05 0.97 3.20 3.63

Triple-Part (10 items)
W4SE 5.14 6.72 4.29 3.19 11.15 6.10 3.10

BIAS 0.73 6.30 -1.43 1.44 5.91 2.59 3.38

Double-Part (10 items)
RMSE 5.27 8.85 11.71 7.23 12.02 9.02 2.90

BIAS -4.01 8.53 3.20 5.55 5.65 3.78 4.75

As was stated previously, for comparison purposes two of the three
10-item equatings were averaged. RMSE and BIAS statistics for this method are
shown in Table 3. As can be seen, while the triple-part equating with 10-item
common item blocks did at least as well as the double-part 20-item equating
procedure, the same cannot be said for 10-item double-part equating. This

procedure yielded greater RMSE and BIAS values than either of the other two
procedures.

?
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SUMMARY AND CONCLUSIONS

The present study addressed the effects of using IRT equating to reduce
test form overlap of the GRE Mathematics test. Monte-Carlo methods were
employed to compare double-part equating with 20-item common item blocks to
triple-part equating with 10-item common item blocks by equating a form to
itself through a series of other forms. Comparisons between scores on equated
forms and scores on the base form indicated that triple-part equating yielded
less error, less bias, and more stable results than the double-part equating.
It was also found that double-part equating with 10-item common item blocks
was less satisfactory than either of the other two procedures. This suggests
that it may be reasonable to use IRT equating with the GRE Subject Test in
Mathematics with smaller common item blocks than current linear procedures now
employ, provided there are more of them. This would result in a substantial
reduction in the advantage given to repeat examinees, and would significantly
decrease the number of items on any one test form affected by compromised
security.

However, additional research should be performed before IRT equating
procedures are used operatioNAily to reduce test form overlap of the GRE
Subject Test in Mathematics. In this study, for example, examinees taking the
base and equated forms were randomly sampled from the same ability
distribution. However, actual examinees taking different forms of the test
are not random samples from the same population; in fact, the ability levels
of the two groups may be quite different.

Cook and Eignor (1983) discuss how IRT common item equating may result in
less scale drift over time than conventional linear and equipercentile
equating methods when new and old form groups differ in ability. Cook and
Petersen (1987), however, reviewed several studies of achievement tests and
found that IRT equating results were affected when the base and equated form
examinees took the test at different administrations and differed in ability
level. In one such study (Cook, Eignor, & Taft, 1985), it was hypothesized
that examinees taking the test at different administrations differed in the
relative recency of their coursework, and this interacted with test content.
The test, therefore, may have assessed different constructs for each group of
examinees. If similar circumstances apply to the GRE Subject Test in
Mathematics, the results found for double- and triple-part equating in the
present study might have been different if the base and equated form groups
had differed in ability level. Perhaps a follow-up to the present study could
be performed to investigate the effects of differing levels of ability for the
base and equated form groups.

A related issue that should probably be examined Is whether it is really
necessary to perform separate scalings for the different common item blocks.
The procedure discussed in this study would require the construction of six
content-representative common item blocks containing only 10 items, a
procedure that might not always be practical, or even possible. However, if
all the common item blocks have first been placed on the same scale using a
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procedure such as TBLT, it may be possible to combine them into a single
scaling. If such a procedure is used, for any new form the content-
representativeness criterion would only have to be met for the entire set of
30 common items, not for each individual block of 10 items.

The question of whether to perform three scalings or one hinges on the
success of each individual scaling. In the design employed in this study, if
the IRT parameter estimates for the tier 2 forms are really on the same scale,
it seems likely a single, 30-item scaling of Form A. would suffice. However,

if a factor such as differing ability distributions for different forms
introduces error into the scaling process, it may be better to perform
multiple scalings. While this issue can be avoided initially by calibrating
all current forms in a single run of LOGIST, as more new forms are calibrated
and scaled to the original calibration, the issue will become more important.
Because of this, it should probably be investigated prior to adoption of
triple-part equating.
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